31 research outputs found

    The KNMI Large Ensemble Time Slice (KNMI-LENTIS)

    Get PDF
    Large-ensemble modelling has become an increasingly popular approach to studying the mean climate and the climate system's internal variability in response to external forcing. Here we present the Royal Netherlands Meteorological Institute (KNMI) Large Ensemble Time Slice (KNMI-LENTIS): a new large ensemble produced with the re-tuned version of the global climate model EC-Earth3. The ensemble consists of two distinct time slices of 10 years each: a present-day time slice and a +2ĝ€¯K warmer future time slice relative to the present day. The initial conditions for the ensemble members are generated with a combination of micro- and macro-perturbations. The 10-year length of a single time slice is assumed to be too short to show a significant forced climate change signal, and the ensemble size of 1600 years (160ĝ€¯×ĝ€¯10 years) is assumed to be sufficient to sample the full distribution of climate variability. The time slice approach makes it possible to study extreme events on sub-daily timescales as well as events that span multiple years such as multi-year droughts and preconditioned compound events. KNMI-LENTIS is therefore uniquely suited to study internal variability and extreme events both at a given climate state and resulting from forced changes due to external radiative forcing. A unique feature of this ensemble is the high temporal output frequency of the surface water balance and surface energy balance variables, which are stored in 3-hourly intervals, allowing for detailed studies into extreme events. The large ensemble is particularly geared towards research in the land-atmosphere domain. EC-Earth3 has a considerable warm bias in the Southern Ocean and over Antarctica. Hence, users of KNMI-LENTIS are advised to make in-depth comparisons with observational or reanalysis data, especially if their studies focus on ocean processes, on locations in the Southern Hemisphere, or on teleconnections involving both hemispheres. In this paper, we will give some examples to demonstrate the added value of KNMI-LENTIS for extreme- and compound-event research and for climate-impact modelling.</p

    Big Changes in How Students are Tested

    Get PDF
    For the past decade, school accountability has relied on tests for which the essential format has remained unchanged. Educators are familiar with the yearly testing routine: schools are given curriculum frameworks, teachers use the frameworks to guide instruction, students take one big test at year’s end which relies heavily upon multiple-choice bubble items, and then school leaders wait anxiously to find out whether enough of their students scored at or above proficiency to meet state standards. All this will change with the adoption of Common Core standards. Testing and accountability aren’t going away. Instead, they are developing and expanding in ways that aim to address many of the present shortcomings of state testing routines. Most importantly, these new tests will be computer-based. As such, they will potentially shorten testing time, increase tests’ precision, and provide immediate feedback to students and teachers

    Benchmarking the vertically integrated ice-sheet model IMAU-ICE (version 2.0)

    Get PDF
    Ice-dynamical processes constitute a large uncertainty in future projections of sea-level rise caused by anthropogenic climate change. Improving our understanding of these processes requires ice-sheet models that perform well at simulating both past and future ice-sheet evolution. Here, we present version 2.0 of the ice-sheet model IMAU-ICE, which uses the depth-integrated viscosity approximation (DIVA) to solve the stress balance. We evaluate its performance in a range of benchmark experiments, including simple analytical solutions and both schematic and realistic model intercomparison exercises. IMAU-ICE has adopted recent developments in the numerical treatment of englacial stress and sub-shelf melt near the grounding line, which result in good performance in experiments concerning grounding-line migration (MISMIP, MISMIP+) and buttressing (ABUMIP). This makes it a model that is robust, versatile, and user-friendly, which will provide a firm basis for (palaeo-)glaciological research in the coming years.publishedVersio

    The impact of uncertainties in ice sheet dynamics on sea-level allowances at tide gauge locations

    Get PDF
    Sea level is projected to rise in the coming centuries as a result of a changing climate. One of the major uncertainties is the projected contribution of the ice sheets in Greenland and Antarctica to sea-level rise (SLR). Here, we study the impact of different shapes of uncertainty distributions of the ice sheets on so-called sea-level allowances. An allowance indicates the height a coastal structure needs to be elevated to keep the same frequency and likelihood of sea-level extremes under a projected amount of mean SLR. Allowances are always larger than the projected SLR. Their magnitude depends on several factors, such as projection uncertainty and the typical variability of the extreme events at a location. Our results show that allowances increase significantly for ice sheet dynamics uncertainty distributions that are more skewed (more than twice, compared to Gaussian uncertainty distributions), due to the increased probability of a much larger ice sheet contribution to SLR. The allowances are largest in regions where a relatively small observed variability in the extremes is paired with relatively large magnitude and/or large uncertainty in the projected SLR, typically around the equator. Under the RCP8.5 (Representative Concentration Pathway) projections of SLR, the likelihood of extremes increases more than a factor 104 at more than 50-87% of the tide gauges

    Benchmarking the vertically integrated ice-sheet model IMAU-ICE (version 2.0)

    Get PDF
    Ice-dynamical processes constitute a large uncertainty in future projections of sea-level rise caused by anthropogenic climate change. Improving our understanding of these processes requires ice-sheet models that perform well at simulating both past and future ice-sheet evolution. Here, we present version 2.0 of the ice-sheet model IMAU-ICE, which uses the depth-integrated viscosity approximation (DIVA) to solve the stress balance. We evaluate its performance in a range of benchmark experiments, including simple analytical solutions and both schematic and realistic model intercomparison exercises. IMAU-ICE has adopted recent developments in the numerical treatment of englacial stress and sub-shelf melt near the grounding line, which result in good performance in experiments concerning grounding-line migration (MISMIP, MISMIP+) and buttressing (ABUMIP). This makes it a model that is robust, versatile, and user-friendly, which will provide a firm basis for (palaeo-)glaciological research in the coming years

    EC-Earth3-AerChem : a global climate model with interactive aerosols and atmospheric chemistry participating in CMIP6

    Get PDF
    This paper documents the global climate model EC-Earth3-AerChem, one of the members of the EC-Earth3 family of models participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6). EC-Earth3-AerChem has interactive aerosols and atmospheric chemistry and contributes to the Aerosols and Chemistry Model Intercomparison Project (AerChemMIP). In this paper, we give an overview of the model, describe in detail how it differs from the other EC-Earth3 configurations, and outline the new features compared with the previously documented version of the model (EC-Earth 2.4). We explain how the model was tuned and spun up under preindustrial conditions and characterize the model's general performance on the basis of a selection of coupled simulations conducted for CMIP6. The net energy imbalance at the top of the atmosphere in the preindustrial control simulation is on average 0.09 Wm(-2) with a standard deviation due to interannual variability of 0.25 Wm(-2), showing no significant drift. The global surface air temperature in the simulation is on average 14.08 degrees C with an interannual standard deviation of 0.17 degrees C, exhibiting a small drift of 0.015 +/- 0.005 degrees C per century. The model's effective equilibrium climate sensitivity is estimated at 3.9 degrees C, and its transient climate response is estimated at 2.1 degrees C. The CMIP6 historical simulation displays spurious interdecadal variability in Northern Hemisphere temperatures, resulting in a large spread across ensemble members and a tendency to underestimate observed annual surface temperature anomalies from the early 20th century onwards. The observed warming of the Southern Hemisphere is well reproduced by the model. Compared with the ECMWF (European Centre for Medium-Range Weather Forecasts) Reanalysis version 5 (ERA5), the surface air temperature climatology for 1995-2014 has an average bias of -0.86 +/- 0.05 degrees C with a standard deviation across ensemble members of 0.35 degrees C in the North-ern Hemisphere and 1.29 +/- 0.02 degrees C with a corresponding standard deviation of 0.05 degrees C in the Southern Hemisphere. The Southern Hemisphere warm bias is largely caused by errors in shortwave cloud radiative effects over the Southern Ocean, a deficiency of many climate models. Changes in the emissions of near-term climate forcers (NTCFs) have significant effects on the global climate from the second half of the 20th century onwards. For the SSP3-7.0 Shared Socioeconomic Pathway, the model gives a global warming at the end of the 21st century (2091-2100) of 4.9 degrees C above the preindustrial mean. A 0.5 degrees C stronger warming is obtained for the AerChemMIP scenario with reduced emissions of NTCFs. With concurrent reductions of future methane concentrations, the warming is projected to be reduced by 0.5 degrees C.Peer reviewe

    EC-Earth3-AerChem: a global climate model with interactive aerosols and atmospheric chemistry participating in CMIP6

    Get PDF
    This paper documents the global climate model EC-Earth3-AerChem, one of the members of the EC-Earth3 family of models participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6). EC-Earth3-AerChem has interactive aerosols and atmospheric chemistry and contributes to the Aerosols and Chemistry Model Intercomparison Project (AerChemMIP). In this paper, we give an overview of the model, describe in detail how it differs from the other EC-Earth3 configurations, and outline the new features compared with the previously documented version of the model (EC-Earth 2.4). We explain how the model was tuned and spun up under preindustrial conditions and characterize the model's general performance on the basis of a selection of coupled simulations conducted for CMIP6. The net energy imbalance at the top of the atmosphere in the preindustrial control simulation is on average −0.09 W m−2 with a standard deviation due to interannual variability of 0.25 W m−2, showing no significant drift. The global surface air temperature in the simulation is on average 14.08 ∘C with an interannual standard deviation of 0.17 ∘C, exhibiting a small drift of 0.015 ± 0.005 ∘C per century. The model's effective equilibrium climate sensitivity is estimated at 3.9 ∘C, and its transient climate response is estimated at 2.1 ∘C. The CMIP6 historical simulation displays spurious interdecadal variability in Northern Hemisphere temperatures, resulting in a large spread across ensemble members and a tendency to underestimate observed annual surface temperature anomalies from the early 20th century onwards. The observed warming of the Southern Hemisphere is well reproduced by the model. Compared with the ECMWF (European Centre for Medium-Range Weather Forecasts) Reanalysis version 5 (ERA5), the surface air temperature climatology for 1995–2014 has an average bias of −0.86 ± 0.05 ∘C with a standard deviation across ensemble members of 0.35 ∘C in the Northern Hemisphere and 1.29 ± 0.02 ∘C with a corresponding standard deviation of 0.05 ∘C in the Southern Hemisphere. The Southern Hemisphere warm bias is largely caused by errors in shortwave cloud radiative effects over the Southern Ocean, a deficiency of many climate models. Changes in the emissions of near-term climate forcers (NTCFs) have significant effects on the global climate from the second half of the 20th century onwards. For the SSP3-7.0 Shared Socioeconomic Pathway, the model gives a global warming at the end of the 21st century (2091–2100) of 4.9 ∘C above the preindustrial mean. A 0.5 ∘C stronger warming is obtained for the AerChemMIP scenario with reduced emissions of NTCFs. With concurrent reductions of future methane concentrations, the warming is projected to be reduced by 0.5 ∘C

    A Systems Approach to Improving Rural Care in Ethiopia

    Get PDF
    Background: Multiple interventions have been launched to improve the quality, access, and utilization of primary health care in rural, low-income settings; however, the success of these interventions varies substantially, even within single studies where the measured impact of interventions differs across sites, centers, and regions. Accordingly, we sought to examine the variation in impact of a health systems strengthening intervention and understand factors that might explain the variation in impact across primary health care units. Methodology/Principal Findings: We conducted a mixed methods positive deviance study of 20 Primary Health Care Units (PHCUs) in rural Ethiopia. Using longitudinal data from the Ethiopia Millennium Rural Initiative (EMRI), we identified PHCUs with consistently higher performance (n = 2), most improved performance (n = 3), or consistently lower performance (n = 2) in the provision of antenatal care, HIV testing in antenatal care, and skilled birth attendance rates. Using data from site visits and in-depth interviews (n = 51), we applied the constant comparative method of qualitative data analysis to identify key themes that distinguished PHCUs with different performance trajectories. Key themes that distinguished PHCUs were 1) managerial problem solving capacity, 2) relationship with the woreda (district) health office, and 3) community engagement. In higher performing PHCUs and those with the greatest improvement after the EMRI intervention, health center and health post staff were more able to solve day-to-day problems, staff had better relationships with the woreda health official, an

    initMIP-Antarctica: an ice sheet model initialization experiment of ISMIP6

    Get PDF
    Ice sheet numerical modeling is an important tool to estimate the dynamic contribution of the Antarctic ice sheet to sea level rise over the coming centuries. The influence of initial conditions on ice sheet model simulations, however, is still unclear. To better understand this influence, an initial state intercomparison exercise (initMIP) has been developed to compare, evaluate, and improve initialization procedures and estimate their impact on century-scale simulations. initMIP is the first set of experiments of the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6), which is the primary Coupled Model Intercomparison Project Phase 6 (CMIP6) activity focusing on the Greenland and Antarctic ice sheets. Following initMIP-Greenland, initMIP-Antarctica has been designed to explore uncertainties associated with model initialization and spin-up and to evaluate the impact of changes in external forcings. Starting from the state of the Antarctic ice sheet at the end of the initialization procedure, three forward experiments are each run for 100 years: a control run, a run with a surface mass balance anomaly, and a run with a basal melting anomaly beneath floating ice. This study presents the results of initMIP-Antarctica from 25 simulations performed by 16 international modeling groups. The submitted results use different initial conditions and initialization methods, as well as ice flow model parameters and reference external forcings. We find a good agreement among model responses to the surface mass balance anomaly but large variations in responses to the basal melting anomaly. These variations can be attributed to differences in the extent of ice shelves and their upstream tributaries, the numerical treatment of grounding line, and the initial ocean conditions applied, suggesting that ongoing efforts to better represent ice shelves in continental-scale models should continue

    The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6

    Get PDF
    The Earth system model EC-Earth3 for contributions to CMIP6 is documented here, with its flexible coupling framework, major model configurations, a methodology for ensuring the simulations are comparable across different high-performance computing (HPC) systems, and with the physical performance of base configurations over the historical period. The variety of possible configurations and sub-models reflects the broad interests in the EC-Earth community. EC-Earth3 key performance metrics demonstrate physical behavior and biases well within the frame known from recent CMIP models. With improved physical and dynamic features, new Earth system model (ESM) components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.Peer reviewe
    corecore